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We present a new three-dimensional hybrid level set (LS) and volume of fluid (VOF)
method for free surface flow simulations on tetrahedral grids. At each time step, we evolve
both the level set function and the volume fraction. The level set function is evolved by
solving the level set advection equation using a second-order characteristic based finite
volume method. The volume fraction advection is performed using a bounded compressive
normalized variable diagram (NVD) based scheme. The interface is reconstructed based on
both the level set and the volume fraction information. The novelty of the method lies in
that we use an analytic method for finding the intercepts on tetrahedral grids, which
makes interface reconstruction efficient and conserves volume of fluid exactly. Further-
more, the advection of volume fraction makes use of the NVD concept and switches
between different high resolution differencing schemes to yield a bounded scalar field,
and to preserve both smoothness and sharp definition of the interface. The method is cou-
pled to a well validated finite volume based Navier–Stokes incompressible flow solver. The
code validation shows that our method can be employed to resolve complex interface
changes efficiently and accurately. In addition, the centroid and intercept data available
as a by-product of the proposed interface reconstruction scheme can be used directly in
near-interface sub-grid models in large eddy simulation.

Crown Copyright � 2009 Published by Elsevier Inc. All rights reserved.
1. Introduction

Flow with free surface is common phenomena encountered in a wide variety of environmental, geophysical and engineer-
ing situations. Simulating free surface flow, however, remains a formidable challenge because non-linear boundary condi-
tions are required to be satisfied on an arbitrarily moving surface whose position is not prescribed a priori.

Mainly two approaches are used to track the free surface, the Lagrangian and Eulerian. Both approaches have advantages
and weaknesses, and the focus of this paper will be on the latter option. Tracking the free surface using the Eulerian descrip-
tion employs an equation for the density:
@q
@t
þ u � rq ¼ 0; ð1Þ
which is referred to as the transport equation. The density q(x, t) can be either continuous or discontinuous. By tracking the
change of q it is possible to identify the location of the free surface. Direct numerical solution of Eq. (1) leads to excessive
numerical diffusion. As a result, the free surface will become thicker and thicker and eventually become diffused into the
2009 Published by Elsevier Inc. All rights reserved.
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whole domain. Hence other approaches have been used for such a purpose. Nichols et al. [1] developed the volume of fluid
(VOF) method to track the free surface. By using the transport equation and assuming that density is everywhere constant
(q = q0) in the flow domain and zero (q = 0) in the air domain, it is possible to normalize the transport equation by q0. Defin-
ing F = q/q0 as the fractional volume of fluid function (VOF function), the transport equation becomes:
@F
@t
þ u � rF ¼ 0: ð2Þ
F is a step function, where F = 1 in cells containing fluid and F = 0 in cells containing air. In free surface cells, the value of F
ranges between (0–1). Therefore, by tracking the VOF function F, one can identify the free surface elements at any time step.
He numerical solution of Eq. (2) requires some care in order to avoid introducing too much numerical diffusion while main-
taining the accuracy of the scheme. Hirt and Nichols [2] proposed the donor–acceptor method, which is the simplest treat-
ment for controlling the numerical diffusion during the advection of the VOF function F. However, it is only first-order
accurate. The inaccuracy in the donor–acceptor method is primarily caused by the oversimplification of the free surface
geometry during the advection process. In [3], Youngs introduced a more accurate way to reconstruct the free surface by
defining the free surface slope within each surface cell according to the gradient of the VOF function F and the intercepts
with the slope and the volume of fluid of the element. The resulting free surface is discontinuous at the cell faces, since each
element has its own free surface slope. Ashgriz and Poo [4] proposed a variant of this technique for two-dimensional prob-
lems which reconstructs the sloping interface at the cell boundaries, avoiding discontinuities in the free surface and provid-
ing more accurate results. Although the sloping method is in general more accurate than the donor–acceptor method, it still
suffers from a few limitations. First, the sloping interface reconstruction and consequent advection is much more computa-
tionally intensive than that of the donor–acceptor method and it is more difficult to code. Furthermore, the extension of the
sloping interface method from two dimensions to three dimensions needs much more effort than that of the donor–acceptor
method and it is subject to numerical uncertainties that have not been tested and discussed fully. The difficulty in recon-
structing the free surface accurately and efficiently prevents the practical application of the sloping interface method, espe-
cially in three-dimensional cases. Welch et al. [5] proposed a method which employed a sub-grid counting procedure to
determine the accurate location of the interface and the correct advective flux, however, this technique has yet to attract
widespread use.

VOF methods have proved to be robust and relatively easy to code, but still have drawbacks [18,44–46]. The overall accu-
racy of this method relies heavily on the performance of its interface reconstruction scheme. Most currently available recon-
struction schemes are developed exclusively for 2D Cartesians meshes. In these methods the cell shapes, usually rectangular,
are implicitly included in the reconstruction of the interface. Consequently, it is difficult to extend these methods to arbitrary
complex meshes. Extensions to three-dimensional calculations pose similar difficulties. More discussion on this topic can be
found in [7]. The interface propagation is also a problem, especially in multi-dimensional problems where an explicit split
operator technique (see [3]) is often employed. The basic idea of operator splitting is to apply the one-dimensional equation
in separate steps for each of the coordinate directions. This limits the implementation to structured meshes in which the
faces of the control volume are aligned with the coordinate axes.

The choice of volume fraction as a phase indicator is a popular one but is prone to problems associated with the advection
of a step function across a mesh that have to be overcome. Namely, how to advect the interface without diffusing, dispersing,
or wrinkling it; while in the meantime maintaining the boundedness of the F function to avoid the non-physical deformation
of the interface shape.

Recently, several strategies to sharpen the interface using VOF methods have been developed. In [8], a compressive dis-
cretization scheme called CICSAM (Compressive Interface Capturing Scheme for Arbitrary Meshes) is developed. It makes use
of the normalized variable diagram (NVD) concept [10] and switches between different differencing schemes to yield a
bounded scalar field, and to preserve both smoothness and sharp definition (over one or two computational cells) of the
interface. The scheme is developed in the context of multi-dimensional applications, avoiding the need to use operator split-
ting. The merit of this method lies in that it can be easily implemented on arbitrary complex meshes. However, the thickness
of the free surface still cannot be maintained as constant, and its actual performance depends on the local quality of the grid.

Another technique for interface tracking is the level set method (Sussman et al. [11]). By substituting q with the smooth-
level set function u Eq. (2) becomes
@u
@t
þ u � ru ¼ 0: ð3Þ
The function u gives the normal distance from the interface, in which its original value is set to zero at the interface. By
tracking the zero value of u based on Eq. (3), one may identify the interface during the computation. Because the set level
function / is a smooth function, it is much easier to compute and it induces much less numerical diffusion. But it has been
shown [6] that this method is subjected to significant mass loss under complicated situations since the scheme does not
explicitly impose mass conservation. Lots of studies have been performed by many researchers to solve this problem. Suss-
man and Puckett combined their method with a VOF method in order to overcome problems with mass conservation [13].
But this improvement is too complex to be implemented in three-dimensional solvers and will pose problems for arbitrary
complex grids. In the level set method, maintaining u as a distance function is essential for providing the interface with a
width fixed in time, more importantly, it is very crucial for mass conservation. The technique can be improved further by
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‘reinitialising’ the distance function repeatedly [12]. Conventional routines for reinitializing a distance function have to
explicitly find the contour u = 0 and reset u at all grid points close to the front. This can distort the front (e.g. mass loss,
non-physical deformation) depending on how one reconstructs the shape of the front (u = 0). Traditional the distance reini-
tialization is achieved by solving the following equation in an iterative manner:
@u
@t
� S u0ð Þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

i¼1

@u
@xi

� �2
vuut0@ 1A ¼ 0;

Sðu0Þ ¼
u0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
0 þ e2

q ð4Þ
In Eq. (4), u0 is the initial distribution of the level set function before reinitialization, and e a small number to avoid divid-
ing by zero, usually chosen as the local grid length. This procedure avoids finding the interface and has proved to be efficient
to implement in Cartesians grid solvers. It must be executed after every time step in order to keep u as a distance function. In
practice, we have found that this algorithm will pose difficulties when implemented in an unstructured grid solver, espe-
cially in a finite volume scheme based solver. Enright et al. proposed a hybrid particle level set method to improve the inter-
face capturing [41]. In [42,43], Kriess and Olsson constructed a modified level set method with built in conservation. Where,
the level set function / was a regularized characteristic function. And a reinitialization procedure, formulated as a conser-
vation law, was used to preserve the smooth profile of the regularized characteristic function.

The ghost fluid method (GFM) was developed based on level set method in its original form [51]. Essentially, GFM exploits
the concept of ghost and real fluid cells and manages them with an overlapping Schwarz like numerical procedure. In the
material interface region, it sets the values of the pressure and normal velocity in the ghost fluid cells to those in the real
fluid cells. To eliminate an otherwise spurious ‘‘over-heating” phenomenon, it computes the density of the ghost fluid using
an isobaric fix technique. As explained in [51], this isobaric fix requires the solution of yet another auxiliary partial differ-
ential equation and therefore increases further the computational complexity of the method. Also as pointed out by some
researchers (for example [53]), the original GFM fails to solve some air/water problems of interest due to the large density
ratio. In [55], Kang and the co-authors extended GFM to multiphase incompressible flow including the effects of viscosity,
surface tension and gravity. The novelty of their approach is that they incorporated the boundary condition capturing ap-
proach for the variable coefficient Poisson equation developed in [54] to treat the interface in a sharp fashion rather than
numerical smearing. They have showed improved accuracy and robustness of their approach against the original GFM.

In [56], the authors present an enhanced resolution capturing method for topologically complex two and three-dimen-
sional incompressible free surface flows. The method is based upon the level set method of Osher and Sethian to represent
the interface combined with two recent advances in the treatment of the interface, a second-order accurate discretization of
the Dirichlet pressure boundary condition at the free surface [57] and the use of massless marker particles to enhance the
resolution of the interface through the use of the particle level set method [41].

In [14], a novel three-dimensional problem formulation is introduced for the simulation of turbulent interfacial multi-
fluid flows. The strategy is built around the large eddy simulation (LES) concept and provides two main features: (i) a recon-
structed distance function (RDF) is introduced to define a level set interface-normal length scale, and (ii) an interfacial shear
velocity is defined on the distance function support for further use in near-interface transport models. Their solution algo-
rithm uses VOF with piecewise planar interface reconstructions on a twice-as-fine mesh, and infers the convective mass
fluxes from the interface solution for momentum conservation. The procedure provides the interfacial shear velocity defined
on the distance function support to accommodate the asymptotic behaviour of turbulence approaching the interface in a
proximity-dependent manner. Provided with highly accurate distance function data, the scheme generates near-interface
damping functions that are second-order accurate and independent of interface orientation. Their algorithm is developed
for the structured Cartesians grids and discussion on extension to unstructured grids is not covered. However, the basic idea
employed in their study is borrowed in current work.

In this study, a novel coupled level set/VOF method for interfacial flow simulations on three-dimensional unstructured
tetrahedral grids is presented. The rest of the paper is organized as follows. The details on analytical piecewise linear inter-
face reconstruction (PLIC) and distance reinitialization for level set function are presented in the next section. In Section 3 we
describe the governing equations and numerical methods for Navier–Stokes incompressible flow, as well as the evolution for
the level set function and the volume fraction. In Section 4, the issues concerning the performance and robustness of the
proposed free surface scheme are discussed. The coupling of free surface scheme with IMM is also discussed in Section 5.
Code validation and results are presented in Section 6. The conclusion and some plans on future work are given in Section 7.

2. Analytic PLIC and distance reinitialization

2.1. Analytic PLIC on 3D tetrahedral grids

Analytical relations connecting linear interfaces and volume fractions in structured rectangular grids have been presented
in [14]. This was extended in [15] to analytical relations connecting linear interfaces and volume fractions in triangular and
tetrahedral grids, i.e., given the interface normal vector in a cell, how to find the unique linear segment which also truncates
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the cell by the given volume fraction. The merit of this method is that the analytic formulations eliminate the need to iterate,
and thus reduce computation time. In addition, the volume of fluid is exactly conserved during interface reconstruction. This
method serves as the basis of our interface reconstruction algorithm.

In a three-dimensional grid, a reconstructed linear interface in each tetrahedral cell is a polygonal segment of a plane,
which can be represented by the vertices of the polygon (see Fig. 1). Consider an arbitrary tetrahedral cell of a given volume
fraction F and a linear interface with a given unit normal vector~n, which can be easily computed from the level set equation
define in Eq. (20) by~n ¼ @/

@x ;
@/
@y ;

@/
@z

n o
. The vertices of the tetrahedron are denoted by A, B, C, and D in such an order that we have
Fig. 2.
Regime
0 ¼ PA 6 PB 6 PC 6 PD: ð5Þ

The exact meaning of the symbols in Eq. (5) can be clearly explained using Fig. (1). Where plane l, whose normal vector is

~n, passes through vertex A, PB, PC and PD the respective normal distance from vertex B, C and D. With relation Eq. (5) satisfied,
the intersection of a linear interface with a tetrahedral grid cell can be categorized into three regimes, which are shown in
Fig. 2. Following [15], the intercepts of the planar interface with the tetrahedral cell ABCD can be determined as follows.

For regime I [see Fig. 2(a)], the interface polygon is a triangle with vertices G, H, and I. Their coordinates can be computed from
XG ¼ XA þ
f
fB

� �1=3 PB

PD
AD
!
;

XH ¼ XA þ
f
fB

� �1=3 PB

PC
AC
!
;

XI ¼ XA þ
f
fB

� �1=3

AB
!
:

ð6Þ
Fig. 1. Schematic of the vertices ordering for a tetrahedral cell.
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Intersection of a planar interface with a tetrahedral grid cell. BEF ?~n and KLC ?~n. G, H, I and J are the intercepts of planar interface with the cell. (a)
I. GHI ?~n; (b) regime II. GHIJ ? ~n; and (c) regime III. GHI ? ~n.
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For regime III [see Fig. 2(c)], the coordinates for the three intercepts G, H, and I can be determined by
XG ¼ XD þ
1� f

fC

� �1=3 PD � PC

PD
DA
!
;

XH ¼ XD þ
1� f

fC

� �1=3

DC
!
;

XI ¼ XD þ
1� f

fC

� �1=3 PD � PC

PD � PB
DB
!
:

ð7Þ
For regime II [see Fig. 2(b)], the coordinates for the four intercepts G, H, I and J can be determined by
XG ¼ XA þ
PB

PD
AD
!
þa

PC � PB

PD
AD
!
;

XH ¼ XC þ ð1� aÞ PC � PB

PC
CA
!
;

XI ¼ XB þ a BC
!
;

XI ¼ XB þ a
PC � PB

PD � PB
BD
!
:

ð8Þ
And
a ¼ �ðPC � PBÞ2

PD

1
PC
þ 1

PD � PB

� �
;

b ¼ 3ðPC � PBÞ2

PDPC
;

c ¼ 3PBðPC � PBÞ
PDPC

;

d ¼ � P2
B

PDPC
� f ;

h ¼ 1
3

arccos � d=aþ 2b3
=ð27a3Þ � bc=ð3a2Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� c=a�b2=ð3a2Þ

3

� �3
r

0BB@
1CCA;

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� c=a� b2

=ð3a2Þ
3

s ffiffiffi
3
p

sin h� cos h
� �

� b
3a
: ð9Þ
In the above equations, f is the volume fraction associated with cell ABCD, fC and fB are defined as
fB ¼
PB

PC

� �2 PC

PD
;

fC ¼
PD � PC

PD � PB

� �2 PD � PB

PD
:

ð10Þ
In practice, we have tested this analytic method on a wide range of tetrahedral grids, from very coarse one to highly re-
fined one, and found no problems, even on the meshes with many badly shaped cells. Some special cases may arise and need
special treatment as mentioned in [15]. The method is quite efficient compared to its iterative counterparts. The only param-
eters required are the volume fraction value and the interface normal vector, which should be associated with the centroid of
the cell. It is quite straightforward to implement in a cell-centered method. For vertex-centered schemes, such as in our case,
it may pose some problems, which will be addressed in Section 3.

2.2. Distance reinitialization for level set function

After the piecewise linear interfaces are constructed for every interfacial cell. The reinitialization of the distance function
can be performed in a straightforward manner. For each grid point, its signed distance to the interface can be easily calcu-
lated in three steps. Firstly, the initial sign of the distance function is recorded. And then the shortest distance between cur-
rent point and the reconstructed interfaces is assigned to this point. Lastly, multiply the recorded sign with the shortest
distance to ensure the sign of its distance function remains unchanged. The calculation of the shortest distance in step
two deserves further discussion. There are a few ways to fulfill this task. As shown in Fig. 3.

In either way listed in Fig. 3, intercepts are necessary for computing the centroid point of any VOF interface plane. How-
ever, the use of intercepts when determining the shortest distance represents an increase in computation of threefold or
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more. Intercepts of a PLIC VOF interface reconstruction may often be closer to the vertex location A than the centroid from
the same plane, but the locations of intercepts are also sensitive to plane orientation. In contrast, the VOF plane centroid is
far less sensitive while the free surface is evolving. For these reasons, our approach to distance reinitialization focuses on
centroid data, and ignores intercept data. In example calculations we have found that the practical difference between these
two methods is negligible. Only a few sub-layers of grid points near the VOF interface contribute to the accuracy of the level
set method, as reported in many other publications (e.g. [11–13]).

3. Governing equations and numerical methods

3.1. Governing equations for N–S incompressible flow and free surface evolution

The non-dimensional governing 3D equations, modified by the artificial compression method (ACM) [16], are given as
Fig. 3.
interce
include
1
b
@p
@s
þr � ~U ¼ 0; ð11Þ

@u
@s þ

@u
@t
þr � ðu~UÞ ¼ � 1

q
@p
@x
þ 1

qRe
� r2 � uþ 1

q
FSx þ Fgx; ð12Þ

@v
@s
þ @v
@t
þr � ðv~UÞ ¼ � 1

q
@p
@y
þ 1

qRe
� r2 � v þ 1

q
FSy þ Fgy; ð13Þ

@w
@s
þ @w
@t
þr � ðw~UÞ ¼ � 1

q
@p
@z
þ 1

qRe
� r2 �wþ 1

q
FSz þ Fgz; ð14Þ

@/
@s
þ @/
@t
þr � ð/~UÞ ¼ 0; ð15Þ

@F
@t
þrðF � ~UÞ ¼ 0; ð16Þ
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2D schematic of determination of the shortest distance from a vertex to the reconstructed planar interfaces. Numbers represent the computed
pts. Characters represent the centroids of the interfaces. (a) Only centroids are included in the distance computation; (b) centroids and intercepts are
d in the distance computation.
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where U
!
¼ u �~iþ v �~j þw �~k. Please be noted that in current method, the free surface evolution is governed by both level set

equation / [Eq. (15)] and the volume of fluid equation F [Eq. (16)]. The detailed description on evolving F will be given in
Section 3.6.

The non-dimensional variables used in above equations are defined as
ðx; y; zÞ ¼ x�

L�
;
y�

L�
;
z�

L�

� �
; ðu;v ;wÞ ¼ u�

U�1
;
v�
U�1

;
w�

U�1

� �
; q ¼ q�

q�1
; t ¼ t�

L�=U�1
; p ¼ p� � po

q�1 U�1
� �2 ; Re ¼ q�1U�1L�

l�a
;

Fr ¼ U�1ffiffiffiffiffiffiffi
gL�

p ; We ¼
q�1 U�1
� �2L�

r�1
;

where L* denotes the reference length and U�1 denotes the reference velocity. Terms with superscript * indicate dimensional
quantities, and the subscript 1 indicates the other reference terms.

Eqs. (11)–(15) can be expressed in non-dimensional vector form as follows:
C
@W
@s
þ K

@W
@t
þr �~Fc ¼ r �~Fv þ S

!
; ð17Þ
where
W ¼

p

u

v
w

u

26666664

37777775; ~Fc ¼

U
!

u U
!
þp=qdij

v U
!
þp=qdij

w U
!
þp=qdij

u U
!

26666666664

37777777775
; ~Fv ¼

0
1

qRe � r � u
1

qRe � r � v
1

qRe � r �w
0

266666664

377777775;

K ¼

0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

26666664

37777775; C ¼

1
b 0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

26666664

37777775;

S
!
¼

0
Fgx

Fgy

Fgz

0

26666664

37777775:

ð18Þ
In all the equations above, W is the vector of dependent variables, p and q are pressure and density, respectively, b the
constant parameter introduced by ACM. ~Fc and ~Fv are the convective flux and viscous flux vectors. S

!
contains the volume

force terms such as gravity acceleration. The first term on the left-hand side of Eq. (17) is a partial derivative with respect
to pseudo-time s (the artificial compression term), which is introduced to couple velocity and pressure fields for the calcu-
lation of pressure based on the divergence-free condition. C is a preconditioning matrix that arises with the implementation
of the artificial compressibility method. K is the unit matrix with its first element being zero. The spatial Cartesian coordi-
nates are x, y and z, and t is the physical time. Fg is the gravity force per unit mass and is given as
~Fg ¼
~ng

Fr2 ; ð19Þ
Where Fr is the Froude number and ~ng the unit vector along the prescribed direction of gravity.
The level set function u is defined to be a signed distance function
juð~xÞj ¼ dð~xÞ ¼min
xI2I
ðj~x�~xIjÞ; ð20Þ
where I is the VOF interface, u > 0 on one side of the interface and u < 0 on the other. In standard level set methods, the
advection of u, including a reinitialization step to retain u as a signed distance function, is not done in a conservative
way, not even for divergence-free velocity fields. This implies that the total mass bounded by the zero level set is not con-
served. This drawback has been addressed in currently proposed method.

For a traditional two-phase model, to represent density and viscosity discontinuities over the interface the smeared out
version of Heaviside function can be used for the sake of numerical robustness. In our proposed method, however, the gas-
eous phase will be deactivated during the computation and the flow variables needed to evolve the interface will be extrap-
olated from with the fluid phase. The details will be covered in following sections.
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Eqs. (11)–(15) can be recast in an integral form as follows:
C
@

@s

Z Z Z
V

WdV þ K
@

@t

Z Z Z
V

WdV þ
I

Scv

ð~Fc �~FvÞ � dSþ
Z Z Z

V

~SdV ¼ 0 ð21Þ
Once the artificial steady state is reached, terms involving derivatives with respect to s become zero and the above equa-
tion reduces to
K
@

@t

Z Z Z
V

WdV þ
I

Scv

ð~Fc �~FvÞ � dSþ
Z Z Z

V

~SdV ¼ 0 ð22Þ
Eq. (22) shows that the preconditioning matrix does not affect the solution and the original unsteady incompressible Na-
vier–Stokes equations, Eqs. (11)–(15) are fully recovered.

3.2. Unstructured finite volume method

Following [19], Eq. (21) is discretized on an unstructured tetrahedral grid and a cell-vertex scheme is adopted here, i.e., all
computed variables in vector W are stored at vertices of the tetrahedral cells. For every vertex, as shown in Fig. 4, a control
volume is constructed using the median dual of the tetrahedral grid: nodes A, P, B and C form the vertex of the tetrahedral
cell and O is the centre of the element APBC; a, b and c are the median duals of the edges AP, BP and CP, respectively; and 1, 2
and 3 are the centre points of triangles APC, CBP and ABP, respectively. In the cell-vertex scheme, the computed variables are
stored at vertices A, P, B and C. Triangles O1a and O3a form the control volume surface for the convective term of the gov-
erning equation on edge AP. Likewise, the rest of the convective term for different edges is computed in an analogous man-
ner. Triangles APC, CBP, ABC and ABP form the corresponding control volume surfaces for the calculation of viscous terms.

Finite volume numerical discretizations are based on the solution of the governing equations in integral form and spatial
discretization is performed by using Eq. (21). To introduce the upwind scheme using an edge-based procedure, the convec-
tive term is transformed into the following equation:
I

Scv

~Fc �~n dS ¼
Xnbseg

n¼1

ð~FcÞij �~nDS
h i

n
; ð23Þ
where nbseg is the number of the edges associated with node P; ð~FcÞij is the convective flux through the part of control vol-
ume surface. DSn is part of the control volume surface associated with edge n. Therefore, all the convective fluxes are calcu-
lated for the edges and then collected at the two ends of each edge for updating of flow variables in time marching. The
inviscid flux at the control volume surface associated with an edge ij and ðFcÞij ¼ ð~FcÞij �~nij is evaluated based on Roe’s
approximate Riemann solver [21]:
ðFcÞij ¼
1
2

FL
c þ FR

c � jAjðW
R �WLÞ

h i
; ð24Þ
P

A 

B 
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Fig. 4. Construction of control volume within a tetrahedron for a node P.
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where jAj is defined as Roe-averaged Jacobian matrix.
The viscous term is calculated based on the cell-based method as follows:
I

Scv

~FvdS ¼
Xncell

i¼1

~Fv � DSc

h i
i
; ð25Þ
where ncell is the number of elements associated with node P and DSci is the part of control volume surface in cell i. By using
the following relation:
I

s
dS ¼ 0: ð26Þ
The total vector surface of the control volume in a cell i becomes,
DSci ¼
1
3

DSpi: ð27Þ
Thus, the calculation of viscous terms can be simplified as,
I
Scv

~FvdS ¼
Xncell

i¼1

~Fv � DSc

h i
i
¼ 1

3

Xncell

i¼1

~Fv � DSp

� �
i
; ð28Þ
where DSpi is the surface vector of the face opposite node P of the tetrahedron under consideration. Here the ð~FvÞi is calcu-
lated at the centre of the tetrahedron with a node P, and can be obtained by using the Green’s Theorem based on the vari-
ables at the four vertices of the tetrahedron. Similar to the Galerkin type of formulation, the gradient of a flow variable / at
the centre of a tetrahedron is evaluated as follows:
grad /c ¼ �
P4

i¼1/i9Si

27V
¼ �1

3

P4
i¼1/iSi

V
; ð29Þ
where /i is the flow variable at a vertex i of the tetrahedron and Si is the surface vector that is opposite to node i, V is the
volume of the tetrahedron. Gradients at the vertices are obtained by a volume averaging of the gradients at the centre of
cells associated with the vertex under consideration.

The edge-based method of [22] is adopted to calculate the total inviscid flux. Such a treatment leads to higher efficiency in
computation and reduced data storage requirement. The left and right state vectors WL and WR at a control volume surface
are evaluated using a nominally third-order upwind-biased interpolation scheme. If the left and right state vectors are set to
Wi and Wj (i and j corresponding to the two end nodes of an edge), it is a first-order upwind scheme, which are shown as
follows:
WL ¼Wi þ
1
4
ð1� kÞD�i þ ð1þ kÞDþi
	 


; ð30aÞ

WR ¼Wj �
1
4
ð1� kÞDþj þ ð1þ kÞD�j
h i

; ð30bÞ
where
Dþi ¼ D�j ¼Wj �Wi;

D�i ¼Wi �Wi�1 ¼ 2 ij
!
�rWi � ðWj �WiÞ ¼ 2 ij

!
�rWi � Dþi ;

Dþj ¼Wjþ1 �Wj ¼ 2 ij
!
�rWj � ðWj �WiÞ ¼ 2 ij

!
�rWj � D�j :
Therefore, substituting the above equations into Eqs. (32a) and (32b), and obtain the final equations based on upwind-
biased interpolation scheme is,
WL ¼Wi þ
1
2
ð�kÞ ij

!
�rWi þ kDþi

� �
; ð31aÞ

WR ¼Wj �
1
2
ð1� kÞ ij

!
�rWj þ kD�j

� �
; ð31bÞ
where k is set to 1/3, which corresponds to a nominally third-order accuracy.
Also following the work by Zhao et al. in [20], the values of the primitive variables u, u, v, w and p at the edge center are

determined using an upwind-biased characteristics method:
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u ¼ u0; ð32aÞ

u ¼ fnx þ u0 n2
y þ n2

z

� �
� v0nxny �w0nxnz; ð32bÞ

v ¼ fny þ v0 n2
x þ n2

z

� �
�w0nynz � u0nynx; ð32cÞ

w ¼ fnz þw0 n2
x þ n2

y

� �
� u0nznx � v0nzny; ð32dÞ

p ¼ p1 � k1½ðu� u1Þnx þ ðv � v1Þny þ ðw�w1Þnz�; ð32eÞ
or
p ¼ p2 � k2 ðu� u2Þnx þ ðv � v2Þny þ ðw�w2Þnz
	 


; ð32fÞ
where
C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0Þ2 þ b

q
;

f ¼ 1
2C
ðp1 � p2Þ þ nxðk1u1 � k2u2Þ þ nyðk1v1 � k2v2Þ þ nzðk1w1 � k2w2Þ
	 


;

where nx, ny and nz are the three components of edge vector~n. The characteristic variables uj, vj, wj, pj with j = 0,1,2 in Eq. (32)
are calculated by upwind differences from the left or the right side of the cell face according to the sign of kj by using Eq. (33).
Flow quantities at m + 1 pseudo time level obtained from the preceding equations on the characteristics are then used to
calculate convection fluxes at the control volume interface. Those on different characteristics at m time level are approxi-
mately evaluated by an upwind scheme using the signs of the characteristics as suggested by [23].
Wj ¼ 1
2
ð1þ signðkjÞÞWL þ ð1� signðkjÞÞWR

h i
;

where WL and WR are obtained by the upwind-biased interpolation. And the characteristics are given as
k0 ¼ unx þ vny þwnz; ð33aÞ

k1 ¼ k0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0Þ2 þ b

q
; ð33bÞ

k2 ¼ k0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0Þ2 þ b

q
: ð33cÞ
The computed edge center value of level set function [Eq. (32a)] is then used to calculate the density at the control volume
interface, which is needed for the discretized momentum equations.

The advantages of the characteristics scheme are: (i) stable solution without adding artificial viscosity; (ii) less sensitive
to grid orientation because flow signals are propagated along characteristics.

3.3. A fixed-point dual time stepping scheme

In this work, a fix-point partial implicit scheme is derived, which is found to be efficient in terms of memory requirement
and computing effort per time step. This is due to the fact that no matrix manipulation is required by the scheme.

By re-writing Eq. (21) for a given node P, the spatially discretized equations form a system of coupled ordinary differential
equations, which can be re-formulated as
C
@

@s
DVcvWp
� �

þ K
@

@t
ðDVcvWPÞ ¼ �

Xnbseg

n¼1

ð~FcÞPQ � ð~nDSÞ
h i

n
� 1

3

Xncell

i¼1

~Fv �~nDSP

� �
i

( )
¼ �RðWPÞ; ð34Þ
where R(WP) represents the residual error, or deviation from steady state, which includes the convective and diffusive fluxes
and DVcv is the control volume of node P.

For convenience, the pseudo time derivative term is ignored at the moment. An implicit scheme is adopted to approxi-
mate Eq. (34) and the semi-discrete equation is shown as follows:
K
@

@t
DVnþ1

cv Wp

� �
¼ �R Wnþ1

P

� �
: ð35Þ
The superscript (n + 1) denotes the time level (n + 1)Dt and all the variables are evaluated at this time level. In this work, @
@t

is discretized as a second-order accurate backward difference, so that Eq. (35) is re-formulated as follows:
K
1:5DVnþ1

cv Wnþ1
p � 2:0DVn

cvWn
p þ 0:5DVn�1

cv Wn�1
p

Dt

 !
þ R Wnþ1

P

� �
¼ eR Wnþ1

p

� �
¼ 0; ð36Þ
where eR Wnþ1
p

� �
is the new modified residual, which contains both the time derivative and flux vectors. The advantage of this

implicit scheme is that the physical time step size is not restricted by numerical stability, but only by numerical accuracy.
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This is especially useful in unsteady flow simulation where the maximum time step size is much smaller than the size per-
mitted by accuracy consideration. From Eq. (36), it is worthwhile to note that there is no second-order accurate backward
difference term in the conservation of mass and this is because Eq. (11) does not have a time derivative term. Following
Jameson’s work [17], the derivative with respect to a fictitious pseudo time s, is added to Eq. (36) and the unsteady
Navier–Stokes equations can be re-formulated as,
CDVnþ1
cv

dWp

ds
¼ �eR Wnþ1;mþ1

p

� �
; ð37Þ
whose solution is sought by marching to a pseudo steady state in s. Here m denotes the pseudo time level mDs. Once the
artificial steady state is reached, the derivative of Wp with respect to s becomes zero, and the solution satisfieseR Wnþ1

p

� �
¼ 0. This is actually the solution of Eq. (36). Hence, the original unsteady Navier–Stokes equations are fully recov-

ered. Therefore, instead of solving each time step in the physical time domain (t), the problem is transformed into a sequence
of steady state computations in the artificial time domain (s). This can be performed using a pseudo time explicit five-stage
Runge–Kutta scheme [24,25]. However, the pseudo time step size may be severely restricted if the physical time step size is
very small. In view of this, an implicit dual time stepping scheme is adopted in this work. Eq. (37) can now be re-formulated
as,
CDVnþ1
cv

Wnþ1;mþ1
p �Wnþ1;m

p

ds
¼ �eR Wnþ1;mþ1

p

� �
: ð38Þ
To facilitate the implicit linearization, an approximate flux function must be introduced first. In [26] it is shown how the
total flux (including both inviscid and viscous fluxes, gravity forces are not considered here) across a control volume surface
associated with a certain edge PQ (Q is a node neighbouring to P) can be approximated as,
RPQ ¼~FPQ �
1
2
ð~FcÞP �~nþ ð~FcÞQ �~n� kPQj jðWP �WQ Þ
h i

; ð39Þ
where kPQ is the spectral radius associated with edge PQ, is given as,
kPQ ¼ U
!
�~nPQ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU
!
�~nPQ Þ2 þ b2

q
: ð40Þ
Note that RPQ can be related to the residual R(WP) defined in Eq. (34) as,
RðWPÞ �
Xnbseg

Q¼1

RPQ : ð41Þ
We are now in a place to perform the Taylor series expansion for the modified residual defined in Eq. (36) with respect to
the pseudo time for node P,****
eR Wnþ1;mþ1
P

� �
¼ eR Wnþ1;m

P

� �
þ @

eRðWPÞ
@WP







nþ1;m

DWP þ
Xnbseg

Q¼1

@eRðWPÞ
@WQ

jnþ1;mDWQ

 !
� eR Wnþ1;m

P

� �
þ @

eRðWPÞ
@WP







nþ1;m

DWP ; ð42Þ
where DWP ¼Wnþ1;mþ1
p �Wnþ1;m

p . The approximation introduced in Eq. (42) is the key to our proposed method. We assume
that the link between P and Q, even they are neighbours, are weak, so that the third term at the right hand side of the equa-
tion can be dropped. In such a way we solve the governing equations for each node in a fully decoupled manner. This feature
renders the solver a great simplicity to implement and extremely low memory requirement [19].

Notice that eRðWpÞ contains both the flux vectors and physical time derivative (recall Eq. (36)), and we need to treat them
separately. With the help of Eq. (39) and keeping in mind that the approximate flux function FPQ is edge-based, we may easily
have
@RPQ

@WP
¼ @FPQ

@WP
¼ 1

2
@ð~FcÞPQ

@WP
� kPQj j

" #
ð43Þ
where @ð~FcÞPQ
@WP

¼ AP is the system Jacobian. For the physical time derivative, we have
K
1:5DVnþ1

cv Wnþ1;mþ1
p � 2:0DVn

cvWn
p þ 0:5DVn�1

cv Wn�1
p

Dt

 !

¼ K
1:5DVnþ1

cv Wnþ1;m
p þ Wnþ1;mþ1

p �Wnþ1;m
p

� �� �
� 2:0DVn

cvWn
p þ 0:5DVn�1

cv Wn�1
p

Dt

0@ 1A
¼ K

1:5DVnþ1
cv Wnþ1;m

p þ DWp

� �
� 2:0DVn

cvWn
p þ 0:5DVn�1

cv Wn�1
p

Dt

0@ 1A ð44Þ
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After gathering the edge-based residual into respective vertices, the whole-field equivalent Eq. (38) can then be re-writ-
ten as,
CDVnþ1
cv

Dt þ 1:5Ds
Dt

� APDs
DVnþ1

cv

 !
DWP

Ds
¼ �R Wnþ1;m

P

� �
� K

1:5DVnþ1
cv Wnþ1;m

P � 2:0DVn
cvWn

P þ 0:5DVn�1
cv Wn�1

P

Dt

 !
;

or in short as
CDVnþ1
cv
eAP

DWP

Ds
¼ eR Wnþ1;m

P

� �
: ð45Þ
where eAP ¼ Dtþ1:5Ds
Dt � APDs

DVnþ1
cv
; and,
eR Wnþ1;m
P

� �
¼ �R Wnþ1;m

P

� �
� K

1:5DVnþ1
cv Wnþ1;m

P � 2:0DVn
cvWn

P þ 0:5DVn�1
cv Wn�1

P

Dt

 !
:

By inspecting Eq. (45), we can see that the links between a node point and its neighbours have been cut off and each node
is solved in a fully decoupled manner. This feature renders the solver a great simplicity to implement and extremely low
memory demand, especially in parallel computing environment. In order to solving Eq. (45), the 5 � 5 Jacobian matrix eAP

has to be inverted, which is trivial and can be done analytically.
Further approximations are introduced in order to achieve real matrix free computation. If we employ point implicit

treatment to the preceding equations, then only the diagonal terms in eAP are used in the pseudo time stepping. As a result,
the equation for every node can now be written as,
CDVnþ1
cv feAPgD

DWP

Ds
¼ eR Wnþ1;m

P

� �
; ð46Þ
where feAPgD ¼ diag Dtþ1:5Ds
Dt � APDs

DVnþ1
cv

� �n o
.

Pseudo time stepping is then performed on Eq. (46). An initial guess of Wnþ1;m
P must be provided to start the iteration, one

may simply take it as the old solution from last physical time step.
As described, the current point-fixed method is a different approach from those introduced in [50]. When dealing with

a matrix-free method (e.g. matrix-free GMRES), in practice, one still needs to form a matrix (or set of matrices) for pre-
conditioning purposes, so this family of methods is properly said to be ‘‘Jacobian-free” rather than ‘‘matrix-free”. Further-
more, the equations for all of the node points in the whole computational domain must be solved in a coupled manner
which has been proven to be time consuming and makes it difficult to be implemented in a parallel environment. Basing
on the preliminary numerical experiments we have conducted, exact the same numerical results can be obtained from the
serial version of the two methods. And good consistency is observed between the serial and parallel version of fixed-point
method. However, the parallel GMRES implicit method produces slightly different results from its serial counterpart and
sometimes stability problems. The inconsistency in result and deficiency in robustness may be explained by the fact that
to some level the approximation has to be introduced into the GMRES method while it is parallelized, more specifically,
the connections between far neighbours have to be cut off while performing partitioning. In our present method, no ma-
trix manipulation is needed, the links between any node point and its neighbours have been cut off and the governing
equations for each node are solved in a fully decoupled manner. This feature renders the solver a great simplicity to imple-
ment and extremely low memory demand. The proposed method is found to be efficient in terms of memory requirement
and CPU resources per time step.

In this work, a five-stage Runge–Kutta time integration algorithm is used between each physical time step to iterate the
numerical solution in an artificial time s until convergence is reached [17,19]. Therefore, the converged solution from the
artificial steady state equations becomes the time accurate solution at current physical time, t. The selection of artificial time
step size Ds must satisfy the following two constraints:

(1) Viscous constraint:
Ds 6 Dsv is ¼
qðDhÞ2

2l
: ð47Þ
(2) Convection constraint:
Ds 6 Dsconv ¼
Dh

umax
: ð48Þ
In Eqs. (47) and (48), Dh is the characteristic length of the grid. After Dsvis and Dsconv are computed, the final pseudo time
step size is determined as
Ds ¼minðDsvis;DsconvÞ � LCFL:
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Benefited from the partial implicit treatments introduced into the solver, the CFL parameter LCFL can be as large as 10. The
stopping criterion for pseudo time stepping is
Stop if residual drop satisfies :
Rn;m

Rn;0 6 e; ð49Þ
where e is a prescribed small number. Rn,m is the residual for current sub-iteration and Rn,0 the initial residual at the begin-
ning of current physical time step. In this work, the residual is computed from the continuity equation [Eq. (11)] as
R ¼
XCVTOT

i¼1

Z Z Z
cv
ðr � U

!
Þdv





 




i

¼
XCVTOT

i¼1

I
Scv

ðU
!
�~nÞdS





 




i

¼
XCVTOT

i¼1

Xnbseg

n¼1

ðU
!
Þij �~nMS�n














i

; ð50Þ
where CVTOT is the total number of grid points in the domain. Apart from Eq. (49), another necessary check before quit sub-
iteration is Rn,m less than a prescribed value (10�2 for example). For most of the free surface flow cases, 20 iterations are en-
ough to make the residual drop to a given level (usually be 10�3).

As mentioned by many other researchers, the choice of the pseudo-acoustic velocity b is of importance as it affects the
stability and convergence characteristics of the scheme. In this work, a local treatment of b at each computational cell intro-
duced in [57] is employed to ensure applicability to problems containing flows with both diffusion and convection domi-
nated regions.

The general idea is that the Mach number be kept below unity. While calculating b, a distinction is made between con-
vective-dominated (high Reynolds numbers) and diffusion-dominated (low Reynolds number) flow regions. This is as the
pseudo-acoustic velocity b will be scaled in a different manner in each case. Considering first high Reynolds number flows,
b should be kept as close as possible to the local convection velocity [58]. This is implemented as follows:
bconv ¼
esconv if j~Uj 6 esconv

j~Uj if j~Uj > esconv

(
; ð51Þ
where j~Uj is the magnitude of local velocity vector and esconv is an adjustable parameter determined as follows:
esconv ¼
Re=104 if Re 6 104

1:0j~Ujmax if Re > 104

(
; ð52Þ
with j~Ujmax being the maximum velocity magnitude in the whole-field. For low Reynolds number diffusion-dominated flows,
b is determined as follows:
bvis ¼
CFLDh
Dsvis

� ~U



 


� �2

� 4 ~U



 


2; ð53Þ
where Dsvis is computed from Eq. (47). The final value of b is calculated as b ¼maxfbconv ; bvisg.

3.4. Convergence acceleration techniques

In the present code, time-dependent calculations require the convergence of the Navier–Stokes equations to the steady
state in pseudo-time for each real time step. To speed-up the convergence rate, an implicit residual smoothing scheme devel-
oped for unstructured grids is employed. The smoothing equation for a vertex k can be expressed as follows:
Rk ¼ Rk þ er2Rk ð54Þ
where R is the original residual, R is smoothed residual and e is the smoothing coefficient, which can be defined as
e ¼max
1
4

CFL
CFL�

� �2

� 1

" #
; 0

( )

where CFL* is the maximum CFL number of the basic scheme (typically no bigger than 2). The solution to the above equations
can be obtained on an unstructured grid by using the Jacobi iterative method as follows,
RðmÞk ¼ Rð0Þk þ e
PnumnodðkÞ

i¼1 Rðm�1;mÞ
i

1þ e � numnodðkÞ ð55Þ
where numnod(k) is the number of neighbouring nodes of vertex k.
Another technique employed to enhance the convergence rates is the multigrid method. The basic idea of this method is

to carry out early iterations on a fine grid and then progressively transfer these flow field variables and residuals to a series of
coarser grids. On the coarser grids, the low frequency errors become high frequency ones and they can be easily eliminated
by a time stepping scheme. The flow equations are then solved on the coarser grids and the corrections are then interpolated
back to the fine grid. The process is repeated over a sufficient number of times until satisfactory convergence on the fine grid
is achieved. For ease of implementation, the non-nested mesh method is adopted here, which utilizes independently
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generated non-nested (or overset) coarse meshes and has been proven to be accurate and efficient for solving non-linear flow
equations on unstructured grids (see [59]). V-cycle strategy has been employed in the present work. The initial solution and
residuals on the coarse grid (h + 1) are transferred from the fine grid (h) using volume-weighted transfer operators [59]. In
order to drive the coarser grid solution using the fine grid residual, a forcing function is calculated at the first stage of the
implicit Runge–Kutta time stepping scheme and subsequently added to the residual on the coarse grid. After calculating
the variables on the coarsest grid, the corrections are evaluated and interpolated back level-by-level to the finest grid. To
improve efficiency for the simulation of viscous flows, the viscous terms are only evaluated on the fine grid but not evaluated
on the coarser grids. Since the coarser grids are only used to cancel the dominating low frequency errors, this treatment does
not affect the accuracy of the solution. The upwind-biased interpolation scheme is also set to first-order at the coarser levels.
More specifically, the correction, dWh+1, is the difference between the newly computed value on the coarse grid, Wþ

hþ1, and
the initial value that was transferred from the fine grid, W ð0Þ

hþ1.
dWhþ1 ¼Wþ
hþ1 �W ð0Þ

hþ1:
The corrections are transferred to the fine mesh by the prolongation operator, Ih
hþ1:
vh ¼ Ih
hþ1dWhþ1:
And the solution on fine grid is updated by:
Wþ
h ¼Wh þ vh:
According to Fig. 5, the correction of the flow field variables transferred from the coarse nodes 1, 2, 3 and 4 to the fine
node a is a weighted average of the corrections at these nodes and the expression for the transferred correction is as follows:
ðvaÞh ¼
V1ðdW1Þhþ1 þ V2ðdW2Þhþ1 þ V3ðdW3Þhþ1 þ V4ðdW4Þhþ1

V1 þ V2 þ V3 þ V4
where V1 is the volume of the sub tetrahedron cell with vertices 2, a, 3 and 4. V2 is the volume of the sub tetrahedron cell
with vertices 1, a, 3 and 4. V3 is the volume of the sub tetrahedron cell with vertices 1, a, 2 and 4. V4 is the volume of the sub
tetrahedron cell with vertices 1, a, 2 and 3. The volume of the corresponding tetrahedron cell is the one opposite to the node.

Above two techniques are described in [19,59] in details and can be applied here without change. This is because similar
temporal and spatial discretization techniques are employed by both models.
3.5. Boundary condition

3.5.1. N–S incompressible solver
At the solid wall, slip (for inviscid flows) or no-slip (for viscous flows) and no-injection boundary conditions are imposed,

that is, the zero normal fluxes of mass, momentum, and energy are imposed. In addition, the solid surface is assumed to be
adiabatic, and the pressure gradient normal to the wall at the surface is considered to be zero. For a far-field or upstream
boundary, the flow velocity is given directly, and gradients of variables are assumed to be zero. The pressure at the upstream
was calculated while downstream pressure is fixed at a constant value.
2

1 

4 

3

a

Coarse 
Fine node 

Fig. 5. Transfer of corrections from the coarse mesh to the fine mesh using prolongation transfer operator.
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3.5.2. Level set equation
For level set equation, some special notes must be point out. At the solid wall, slip (normal velocity to the wall is zero) or

no-slip (zero velocity) are both acceptable according to our experiences. They can give similar results for the free surface
calculation. For both case, following condition must be imposed [49]:
@/

@~n
¼ 0;
where ~n is the normal vector to the wall. This condition can be implemented in a cell-centered scheme in a very
straightforward manner. For example, one can use this condition while extrapolating a face value before evaluating
the fluxes for a wall boundary cells. It is more complicated in a vertex-centered scheme for there is no explicit way
to impose such a condition. In this study, we impose this boundary condition in an implicit manner. After computing
the nodal gradients for every node in the domain the normal component of the gradients are reduced to zero for every
boundary nodes. We have found that this treatment has little impact on the overall stability of the code and gives
satisfactory results at the boundary.

3.6. Governing equations and numerical method for volume fraction evolution (VOF)

The evolution of the volume fraction (VOF) field is governed by Eq. (2). For incompressible flow, this can be re-formulated
as Eq. (16) which is repeated here for convenience:
@F
@t
þr F � ~U

� �
¼ 0: ð56Þ
This equation is in divergence form and can be easily discretized as
DVnþ1
cv

DF
Ds
¼ Dt þ 1:5Ds

Dt
� ADs

DVcv

� ��1

�Rnþ1;m � 1:5DVnþ1
cv Fnþ1;m � 2:0DVn

cvFn þ 0:5DVn�1
cv Fn�1

Dt

 !( )
;

where
Rnþ1;m ¼
Xnbseg

n¼1

Ff F
	 


n:
In above equation, the subscript ‘f’ denotes the value at the centre of the edge ij and F is the volumetric flux defined by
F ¼ ~Uf �~nijDS;
where DS is the control volume area associated with edge ij. The components of ~Uf can be determined using Eqs. ((32b)–
(32d)), and the computation of volumetric flux is performed simultaneously along with the level set and N–S equations.
For the vertex-centered method, the cell-vertex values of volume fraction F are used to interpolate the edge centre values
Ff on the control volume faces. This interpolation, which can guarantee a bounded solution while maintaining the sharpness
of the interface, is presented next.

The upwind-biased characteristic method developed in Section 3.3 [Eq. (32)] is very suitable for determining the
edge center values when applied to a smoothly transitioned function, like velocity and level set field, but it is too dif-
fusive for the evolution of step function. The VOF equation is a typical example of this kind. The CICSAM (Compressive
Interface Capturing Scheme for Arbitrary Meshes), [8], is employed due to its ability to maintain the sharpness of the
interface while keeping reasonable accuracy. It makes use of the NVD concept [10] and switches between different high
resolution differencing schemes to yield a bounded scalar field, but one which preserves both the smoothness of the
interface and its sharp definition (over one or two computational cells). The special implicit implementation embedded
inside makes it applicable to unstructured meshes, which is a desired feature by our solver. This method will be
described in steps next.

Step 1. Determine the donor and acceptor control volume (referred by CV herein) according to the sign of the volumetric
flux.
A schematic representation of a one-dimensional CV and its neighbours is given in Fig. 6. The centre CV (donor CV),
referred to with a subscript D, has two neighbours known as the acceptor CV, referred to by subscript A, and the
upwind CV, referred to by subscript U. The local flow direction is used to determine the location of the neighbours.
The CV receiving fluid from the centre CV is the acceptor CV and the other CV is the upwind CV. The CV boundary
face between the donor and acceptor CVs, referred to with a subscript f, is the face under consideration. Note that in
unstructured grids, access to an upwind CV is not necessarily readily available and therefore some special method
has to be introduced whenever the flow requires an upwind CV.

Step 2. Predict the bounded upwind value of volume fraction F�U according to:
F�U ¼min max ½FA � 2ðrFÞD � d�;0
� �

;1
� �

;
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Fig. 6. Schematic of one-dimensional control volume and its neighbours.
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where (rF)D is the volume fraction gradient vector in the donor CV and d is the space vector pointing from donor CV to
acceptor CV. As can be seen from Eq. (56), no explicit variables of an upwind CV are needed.
Step 3. Use the predicted upwind value F�U to calculate the normalized variable for the donor CV eF D.
eF D ¼
FD � F�U
FA � F�U

: ð57Þ
Step 4. Use the upper bound of the convection boundedness criterion (CBC, [29]) for multi-dimensional flow calculations,
which is defined in Eq. (58), to calculate the normalized CV face value.
eF fCBC
¼

min 1;
eF D
cD

� �
when 0 6 eF D 6 1

eF D when eF D < 0 or eF D > 1

8><>: ð58Þ
Step 5. The ULTIMATE-QUICKEST (UQ, see [1]) for multi-dimensional flow calculations, which is defined in Eq. (59), is used
to calculate the normalized CV face value again.
eF fCBC
¼

min 8cD
eF Dþð1�cDÞð6eF Dþ3Þ

8 ; eF fCBC

� �
when 0 6 eF D 6 1

eF D when eF D < 0 or eF D > 1

8><>: ð59Þ
In steps 4 and 5, cD is the control volume Courant number, defined by
nbseg � �
cD ¼
X
n¼1

max
�FDt
DVCVð ÞD

; 0 ; ð60Þ
where F is the volumetric flux defined in Eq. (55) and Dt is the physical time step size.
Step 6. Determine the weighting factor which takes into account the interface orientation and the direction of flow motion:
cf ¼max kc
cosð2hf Þ þ 1

2
;1

� �
; ð61Þ
Where 

 

� �

hf ¼ arccos
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jðrFÞDjjdj


 

 ð62Þ
and kc = 1 is the recommended value.
Step 7. Calculate the normalized CV face value for the CICSAM differencing scheme from:
eF f ¼ cf
eF fCBC

þ ð1� cf ÞeF fUQ
: ð63Þ
Step 8. The calculated eF f is then used for the calculation of , the CICSAM weighting factor:
bf ¼
eF f � eF D

1� eF D

;